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Exper imen ta l  data a r e  p re sen ted  on the wave c h a r a c t e r i s t i c s  of the in te rphase  boundary in 
sepa ra ted  g a s - l i q u i d  wave flow. An e s t i m a t e i s  given of the influence of the waves  on the 
magnitude of the head loss  by the fr ict ion of the g a s - l i q u i d  mix tu re  in a horizontal  tube.  

It  has been es tabl ished in m e a s u r e m e n t s  of the veloci ty  prof i le  in a sepa ra ted  g a s - l i q u i d  s t r e a m  [1] 
that waviness  on the in te rphase  boundary exer t s  a not iceable influence on both the veloci ty  distr ibution in 
both phases  and oa the magnitude of the head loss .  A rheos ta t  t r ansduce r  whose operat ing pr inc ip le  is based  
on the change in the r e s i s t iv i ty  of an e lec t r i ca l  loop during osci l la t ions of the in terphase  boundary  has  been 
fabr ica ted  to m e a s u r e  the wave c h a r a c t e r i s t i c s  (the wave ampli tude and per iod) .  The t r ansduce r  cons i s t s  
of a polyf luoroethylene res in  co re  on which a h igh - re s i s t i v i ty  wi re  i s  Wound in one s e r i e s  a f t e r  which the 
outer  su r face  of the t r ansduce r  is coated with a wa te rp roof  lacquer .  A 1 m m  wide slot  was  made along the 
whole co re  to the me ta l  of the h igh - r e s i s t ance  wi re .  P laced  in pa ra l l e l  to the slot  at  a spacing of s e v e r a l  
m i l l i m e t e r s  was a b a r e  e lec t rode  which was joined to the in terphase  boundary i t se l f  with turns  of the high 
r e s i s t a n c e  wire,  for  which the t r ansduce r  was p laced in an exper imenta l  tube with a g a s - l i q u i d  s t r e a m  so 
that the core  axis  was perpendicu la r  to the tube ax is .  Depending on the liquid depth at the point where  the 
t r ansduce r  was placed,  the e lec t r i ca l  r e s i s t i v i t y  of the h igh - r e s i s t ance  winding changed and a signal  was 
r eco rded  on photographic pape r  of an N-700 loop osc i l lograph.  A t r ansduce r  of such cons t ruc t ion  has  no 
iner t ia ,  which al lows record ing  of waves  with sufficiently high f requency.  A typica l  o sc i l l og ram and photo-  
graph  of the wave p r o c e s s  on the in te rphase  boundary a r e  p re sen ted  in Fig. 1. The no rma l i zed  c o r r e l a -  
tion function of the p r o c e s s  is a damped cosine and is approximated  [2] by: 

Fig.  1. Osc i l logram of the osci l la t ions of the in te rphase  boun- 
da ry  in a g a s - l i q u i d  s t r e a m .  ~2 = 0.8; Re 2 = 15. l0 s, R e i n 5 0  
�9 103. Photograph of an in te rphase  boundary "~2 = 0.9; Re 2 = 15 
�9 103; R e  1 = 6 5 . 1 0 3  . 
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R ('~) = D O e -~* cos (~lm). (1) 

Here a t and fit a re  constants  of the p roces s .  

The damping of the corre la t ion  function (1) indicates the ergodicity of the waviness process  on the 
interphase boundary in a g a s - l i q u i d  s t ream.  

Applying a Four ier  cosine t ransformat ion  to (1), we obtain the energy spect rum of the waviness in 
the following form [3]: 

s Do9, [ al a l l  
= 2-~-- c~ + (o) + [~,)2 + a~ 4- (co - -  [3a) 2 " (2 )  

Determining the magnitude of the var iance  f rom the experimental  curves  recording" the waviness, and 
the constants a t and fit of the p rocess  f rom the corre la t ion  function (Fig. 2), the unnormalized energy spec-  
t ra  of the waviness (Fig. 2) were computed f rom (2). As the velocity of the mixture motion increases ,  the 
waviness intensity grows and the spec t rum nar rows .  For  a mixture motion mode close to stoppage, all the 
waviness energy is concentrated in a narrow frequency band (curve 3 in Fig. 2). A negligible r ise  in the 
velocity of the mixture motion will hence resul t  in a jump passage  of the s t ream to a new (stoppage) flow 
which is cha rac te r i zed  by the success ive  motion of liquid and gas s toppers .  
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Unnormalized en- 
ergy spect ra  of waviness on 
the interphase boundary ~2 
= 0.9 (S, kg .s /m2;  w, see-t) :  
1) Re 2 = 28,000; 2) 36,000; 
3) 85,000. 

A r ise  in the velocity of mixture motion also resul ts  in displacement 
of the maximum point of the spec t rum towards the lower frequencies .  The 
shift of the maximum point of the waviness spect rum is shown in Fig. 3 
for ~2 = 0.9. 

It is shown in [4, 5] that the maximum of the turbulent energy spec-  
t rum of the gas phase in the layer  of a tmosphere  near  the water  and the 
maximum of the waviness energy spec t rum pract ica l ly  coincide, i . e . ,  a 
gas layer  near  the water and the wave surface of a liquid phase oscillate 
in resonance.  This latter fact is important  to the comprehension of the 
physics  of a g a s -  liquid mixture flow because the wave height on the inter-  
phase boundary is capable of reaching the size of the tube diameter  (where- 
upon the passage f rom the separated flow mode to the stoppage mode oc- 
curs),  and therefore  resonance phenomena take over both phases entirely 
in the stoppage mode. 

The influence of the wave charac te r i s t i c s  on the magnitude of the 
head loss was est imated as follows. Formulas  to compute the loss of head 
by fr ict ion in the case of a plane interphase boundary were proposed in [6] 
for a separated mixture flow configuration. A comparison between these 
formulas  and test  resul ts  showed that the measured  p r e s s u r e  drop for a 
wavy interphase boundary is always 20% grea te r  than the theoret ical  on the 
average .  For  a plane interphase boundary the e r r o r  in the theoret ical  for-  
mulas as compared  to test  resul ts  is • As the waviness increases  on 
the interphase boundary, the deviation of the test  resul ts  f rom the theore t -  
ical inc reases .  Starting therefrom,  it can be considered that the loss of 
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Fig. 3. Shift of the maxi-  
mum point of the waviness 
energy spec t rum in a gas 

- l i q u i d  s t r eam as a func- 
tion of the mean gas phase 
velocity ~2 = 0.9 (~, m/see,  
CO, s ec -1 ) .  
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head by fr ict ion in a developed wavy flow mode of a g a s - l i q u i d  mixture  is approximately  20% grea te r ,  com-  
pared  to those cases  when the interphase boundary were  plane. 

It is cus tomary  to understand a wavy g a s - l i q u i d  s t r eam to be such for which the wave height is less  
than or at leas t  of the same order  of magnitude as the tube d iameter .  Investigations conducted permi t ted  
ref inement  of the boundary of wave s t r eam exis tence.  Plug (shell) flow at  F r  <_ 10 is a lso a wave flow. 
This is explained as  follows. For  low Froade numbers  {Fr -< 10) the f l u i d p h a s e s m o v e a s  solid cyl inders  
in the tube, filling the whole tube section ent i re ly .  Visually this is seen as the gas and liquid plugs move 
at the same velocity,  i . e . ,  ~2 = fi, however, an instrumental  determinat ion of the t rue  gas content for  the 
given modes shows [6] that q2 < ~, i . e . ,  t he re  is a re la t ive  phase veloci ty.  We easi ly explain such a pa ra -  
dox if it is cons idered  that the liquid plugs a r e  waves whose shape moves with the phase veloci ty  c hence 
entraining the gas within the troughs of the waves, i . e . ,  between the liquid plugs. It hence follows that the 
veloci ty of the gas phase v 2 should equal the phase velocity c: 

Indeed, by measur ing the repet i t ion ra te  of the liquid plugs by using the t r ansducer  descr ibed  above, and 
the wavelength (the length of the liquid and gas plugs) visually,  we obtain (for F r  <- 10) 

c = ~ .  (41 

As the Froude number  inc reases ,  the dependence (4) is spoiled since a leakage of the gas phase occurs  
between the tube wails and the liquid plugs. 

_ _Cons ider ing  the plug mode as some limiting wavy mode, the onset  of the se l f - s imi l a r  function 
q2 = q2( Fr ,  fi) [6], which holds for  the number  F r  -> 4 (for a horizontal  tube) can be explained graphical ly .  
The se l f - s imi la r i ty  of the function ~2 = ~2( Fr ,  fl) means  that for  F r  -> 4 gravi ty  ceases  to act ,  i . e . ,  the 
acce le ra t ion  of gravi ty  is equil ibrated by the centr ipeta l  accelerat ion;  se l f - s imi l a r i ty  of the function 
~2 = ~2{ Fr ,  fl) holds upon compliance with the relat ionship 

g ~R,, (5) 

where R i = X/2~r; ~ is the wavelength (the length of the liquid and gas plug), w is the repetition rate of the 
liquid and gas plugs. 

An experimental verification of the dependence (5) showed that g ~ w2R I for Fr = 4 and g < a~2Ri for 
Fr> 4. 

The plug repetition rate is connected with the true velocity of the liquid phase by means of the rela- 
tionship 

~d Sh . . . .  (6) 
Ul 

It has been established experimentally that the Strouhal criterion in the zone of self-similarity of the 
function ~2 = ~2( Fr, ~) is a constant analogous to the constant value of the Strouhal number in a single-phase 
stream in the zone of developed turbulence [7]. This fact shows that for sufficiently high Froude numbers 
the gas-liquid flow parameters are self-similar, i .e . ,  are independent of the Froude criterion just as its 
parameters in single-phase streams are, for sufficiently high Reynolds number, independent of this c r i t e -  
rion. 

CO 

u,(2) = ~ / ~  (2) 
= (QI + Q2) yF 

QI(2) 
F 

(2) = (2)/F 
fl = Q2/(Q2 + Qi) 
F~(2) 
d 

NOTATION 

is  the angular  wave frequency,  repet i t ion ra te  of the liquid and gas plugs; 
is the t rue  veloci ty of the liquid and gas phases; 
is the reduced mixture  velocity; 
is  the liquid and gas phase discharge;  
is the c ros s - sec t iona l  a rea  of the tube; 
is the t rue  gas content; 
is the d ischarge  gas-content;  
is the c ros s - sec t iona l  a rea  of the tube occupied by the l i qu id -gas  phase; 
is the tube diameter ;  
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is the Froude criterion; 
is the acceleration of gravity; 
is the Stroulml criterion; 
is the liquid density; 
is the variance (root-mean-square deviation of coordinates of an interphase boundary point 

from the mean position). 
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